Divisibility theory of semi-hereditary rings
نویسندگان
چکیده
منابع مشابه
On Projective Modules over Semi-hereditary Rings
This theorem, already known for finitely generated projective modules[l, I, Proposition 6.1], has been recently proved for arbitrary projective modules over commutative semi-hereditary rings by I. Kaplansky [2], who raised the problem of extending it to the noncommutative case. We recall two results due to Kaplansky: Any projective module (over an arbitrary ring) is a direct sum of countably ge...
متن کاملTilting Theory for Coherent Rings and Almost Hereditary Noetherian Rings
We generalize two major ways of obtaining derived equivalences, the tilting process by Happel, Reiten and Smalø and Happel’s Tilting Theorem, to the setting of finitely presented modules over right coherent rings. Moreover, we extend the characterization of quasi–tilted artin algebras as the almost hereditary ones to all right noetherian rings. We also give a streamlined and general presentatio...
متن کاملOn n-coherent rings, n-hereditary rings and n-regular rings
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
متن کاملHereditary Noetherian Prime Rings
In the study of hereditary Noetherian rings, it is clear that hereditary Noetherian prime rings will play a central role (see, for example, [12]). Here we study the (two-sided) ideals of an hereditary Xoetherian prime ring and, as a consequence, ascertain the structure of factor rings and torsion modules. The torsion theory represents a generalization of similar results about Dedekind prime rin...
متن کاملDivisibility Properties of Group Rings over Torsion-free Abelian Groups
Let G be a torsion-free abelian group of type (0, 0, 0, . . . ) and R an integrally closed integral domain with quotient field K. We show that every divisorial ideal (respectively, t-ideal) J of the group ring R[X;G] is of the form J = hIR[X;G] for some h ∈ K[X;G] and a divisorial ideal (respectively, t-ideal) I of R. Consequently, there are natural monoid isomorphisms Cl(R) ∼= Cl(R[X;G]) and C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2010
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-2010-10465-3